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Abstract 
This paper analyses both the intentional and 
unwanted resonant modes of radial piezoelectric 
transformers (PTs). Initially, finite element analysis 
is performed to discover the type of spurious 
modes prevalent is radial mode PTs. From this, 
analysis is performed on these modes and a 
relationship between resonant frequency and 
geometry is found. The effect of spurious modes 
on the efficiency of a typical PT is simulated using 
an equivalent circuit model in LTSpice and 
Simulink. A number of design rules are generated 
based on the findings.  Results show that, in most 
cases and by careful design, spurious modes can 
be avoided. 

 

1. Introduction 
Piezoelectric transformers are seen by many as an 
attractive replacement for traditional magnetic 
transformers. High power densities, minimal 
electromagnetic interference, small size and high 
efficiency are some of the many advantages that 
PTs provide. They are already employed in a 
number of applications, such as compact 
fluorescent lamps and TVs. PTs are very attractive 
as part of a resonant power converters due to their 
inherent resonant tank and they therefore require 
minimal/no magnetic components to achieve zero 
voltage switching (ZVS) and efficient operation. 
Despite the advantages, designing PTs is a 
complex process and so there are currently only a 
small number of commercially available devices.  

One area of the design process that causes issues 
is the interference caused by unwanted/spurious 
modes. Radial mode piezoelectric transformers 
are well known to operate best when vibrating 
longitudinally, as this provides the highest coupling 
factor [1]. Radial mode devices, like all types of PT, 
have a number of other vibration modes that can 
also occur and currently the primary method of 
detection for these modes is using finite element 
methods (FEM). These modes cause unwanted 
tension in the device, reducing power density and 

causing increased loss, thus lowering efficiency 
[2].  

In this paper, the types of typical spurious mode in 
radial mode devices are derived, from this an 
understanding of the relation between the material 
properties and geometry, and the resonant 
frequency is analysed. The effect of spurious 
modes on the operation of these devices is 
investigated and a number of design rules are 
presented. 
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Fig 1 - Basic model of a radial mode PT (electrode 

areas are assumed infinitely thin) 

2. Spurious vibration modes in radial 
mode piezoelectric transformers 
In order to analyse the spurious modes that occur 
at frequencies near that of the radial vibration 
mode, their vibration shape must be determined.  
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Fig 2 – Resulting displacement plots for the first 4 

eigenmodes of a radial mode PT with a radius of 

9mm and thickness of 3mm 



An eigenfrequency study was performed in 
COMSOL on a simplified 2D axisymmetric model 
of a piezoelectric transformer, with a radius of 
9mm, a thickness of 3mm and made from PZT-5H. 

Fig. 2 (a-d) shows the first 4 mode shapes for this 
2-layer device. From Fig. 2 it is apparent that the 
modes occurring around the radial vibration mode 
are a symmetrical mode, known as flexural 
vibrations. Flexural modes can be categorised by 
the number of nodal diameters (d) and nodal 
circles (c), written as (d, c). Fig. 2 (a,c,d) show 
modes (0,1), (0,2) and (0,3). Fig.2 (b) shows the 

first radial mode of this device.  

This eigenfrequency study was then performed for 
a number of other devices with differing 
dimensions. The results of the study were largely 
similar, although the frequencies at which each 
mode occurred changed for each device. In all 
cases the modes occurring in close proximity to the 
radial mode were flexural vibrations, and they will 
be the focus of this paper. 

 

3. Determining resonant frequencies of 
flexural modes  
In order to optimise the design of a PT for minimum 
interference from spurious modes, the relationship 
between the geometry and material properties, 
and resonant frequency must be evaluated. 

 

3.1. Elastic circular plate theory  

Free vibrations of elastic plates have been a 
comprehensively examined topic over the last two 
centuries, with many exact and approximate 
solutions to the problem. Most notably, in 1850, 
Kirchhoff published a thesis on the theory of thin 
elastic plates, the work included in his thesis 
presented the foundations for solving this type of 
problem [3]. A wide range of authors have 
extended Kirchhoff’s work to improve accuracy 
and include more complex boundary conditions 
[4]. Leissa published a reference book in 1969 that 
summarises the work done on this field and 
included some numeric solutions [5]. The majority 
of the work in this field has been based on 2D 
simplifications of the 3D problem, due to the 
complexity and lack of exact 3D solutions. 

Extending this to piezoelectric plates adds 
additional complexity, as now the electrostatic 
potential must also be solved for. As a result, exact 
3D solutions are currently not available [6]. 
Fortunately, approximating a piezoelectric plate as 
an elastic plate is valid in most cases [7]. In the 
following analysis, the PT will be approximated as 

a single disk with thickness ‘h’ and radius ‘a’, 
shown in Fig.1. The analysis will be based largely 
on elastic theory. 

From Leissa [5], the classic equation for flexural 
vibration of a thin circular plate under Kirchhoff’s 
assumptions is: 

𝐷𝛻4𝑤 + �̅�
𝜕2𝑤

𝜕𝑡2
= 0 (1) 

Where 𝑤 is displacement, �̅� is mass per unit area, 
D is the flexural rigidity given for elastic plates by: 

𝐷 =  
𝑌ℎ3

12(1 − 𝜎2)
 (2) 

Y is the Young’s modulus and 𝜎 is Poisson’s ratio. 
A number of authors have definitions of D 
specifically for piezoelectric plates but all 
definitions provide similar results [8][9][10].  

The general solution to (1) is given below, noting 
that displacement and stress are finite at r = 0 and 
the device is symmetrical about its diameter. 

 

𝑊(𝑟, 𝜃) = (𝐴𝑑  𝐽𝑑(𝜆) +  𝐵𝑑𝐼𝑑(𝜆)) 𝑐𝑜𝑠 𝑑𝜃 (3) 

 

Where  𝐽𝑛 and 𝐼𝑛 are the Bessel and modified 
Bessel functions of the first kind respectively, d is 
the number of nodal diameters (which is 0 for 
symmetrical vibrations), 𝐴𝑑 and 𝐵𝑑 are constants 
and 𝜆 is the ‘non-dimensional’ frequency is related 
to frequency by (4). 

 

𝜆2 =  √
�̅�

𝐷
 𝑓𝑟2 (4) 

 

Exact solutions to (2) can be found by applying 
boundary conditions, which in this case are for a 
completely free plate. This requires the bending 
moment (Mr) and Kelvin-Kirchhoff edge reaction 
(Vr) at r = a to be equal to zero. From this the 
frequency equation can be generated, as given in 
(5). 

 

𝜆2𝐽𝑑(𝜆) + (1 − 𝜎) 𝜆𝐽𝑑
′ (𝜆)

𝜆2𝐼𝑑(𝜆) − (1 − 𝜎) 𝜆𝐼𝑑
′ (𝜆)

− 1 = 0 (5) 

 

Where 𝜆𝐽𝑑
′ (𝜆) and 𝜆𝐼𝑑

′ (𝜆) are given in Eq.6.  

 

𝜆𝐽𝑑
′ (𝜆) =  − 𝜆𝐽𝑑+1

′ (𝜆) 

𝜆𝐼𝑑
′ (𝜆) =  𝜆𝐼𝑑+1

′ (𝜆) 
(6) 

 



Solutions to (5) are reported by Leissa [5], shown 
in Table 1. The values of 𝜆2 can then be used to 
approximate the resonant frequency of each mode 
with (4). 

Table 1 

c 𝝀𝟐 

1 1.446 

2 6.14 

3 13.97 

 

3.2. Finite Element Simulation  

Due to the implications stated earlier, exact 
analytical solutions can only be solved in 2D. 
However, a PT is a 3 dimensional device which for 
most designs disagrees with Kirchhoff’s thin plate 
assumptions, in particular the device will most 
likely not have a radius ten times that of its 
thickness. In order to accurately solve this type of 
problem, a FEM should be used. Another 
advantage of finite element analysis (FEA) is that 
a PT can modelled as a number of separate layers 
rather than 1 disk, further improving accuracy.  

 

To investigate the relation between device 
geometry and resonant frequency of the flexural 
modes, a number of PZT-5H based devices will be 
simulated in COMSOL, with radii varying between 
5 and 14mm and thicknesses between 1 and 5mm. 

Simulations will be done with the output 
electrode(s) connected to ground. The resulting 
resonant frequencies will be extracted. The device 
dimensions have been chosen to reflect the size of 
devices that could be currently manufactured with 
commercially available PZT discs.  

Initial simulations are done on PTs with an input 
layer thickness equal to the output layer thickness, 
ℎ1  =  ℎ2 in Fig. 1 A further set of simulations will 
vary the input to output layer thickness ratio and 
observe the effect.  A final set of simulations will be 
done on devices made up of 3-5 layers, to observe 
any shift in the resonant frequencies.   

 

In order to be able to relate the results to other 
material types and to the results achieved through 
the analytical method, the resonant frequencies 
will be converted to the ‘non-dimensional’ 
frequency using (4). As the radial mode frequency 
is also extracted during the eigenfrequency 
simulation, it will be converted to ‘non-dimensional’ 
frequency and plotted for comparison. As the 
flexural frequencies are found in this method 
without Kirchhoff’s assumptions, the non-
dimensional frequency is expected to change as a 
function of how well the device agrees with the thin 
plate assumptions, thus the resulting values will be 
plotted against the ratio of radius/thickness.  

 

 

Fig 3 – Variation of ‘non-directional’ frequency 𝜆2 with the ratio of device radius to thickness   



4. Results 
4.1. 2 Layer PT – Equal layer thickness 

Fig. 3 shows the results of the first simulation, with 
the input and output layer thickness equal.  As 
expected the FEM results match well with the 
analytical results for large values of 
radius/thickness, when the Kirchhoff assumption is 
valid. An important feature of this figure is the 
highlighting of the radius/thickness ratios which 
causes the radial mode to interact with the 
spurious modes. The figure also highlights the 
differences between the FEM and analytical 
results, in both cases the analytical approach 
shows the point at which two modes cross being at 
a radius/thickness ratio larger than the FEM 
approach. The same results are achieved when 
the output is driven and the input is short circuited 
to ground. This is due to the electrical symmetry 
caused by solving for free vibrations and so the 
input voltage, like the output terminal, is at 0V. 

 

4.2. 2 Layer PT – Differing Layer thickness 

One factor when designing a PT based converter 
is its ability to achieve ZVS, Foster, et al. [11], 
found that, by designing the ratio of input to output 
thickness to be less than 2/𝜋, ZVS can always be 
achieved for a matched load. In order to observe 
the effect of unequal layer thicknesses on resonant 
frequency, another parameter was included that 
changed the relative size of each layer between 
10% and 50% of the total device thickness. 

 

Figs. 4-6 show the how the curve for each mode 
changes slightly as one layer is made thicker than 
the second. An increase in resonant frequency is 
expected as the layer thicknesses become 
unbalanced, thus adjusting the optimal geometric 
size for avoiding interaction between modes.  

4.3 3-5 Layer PT’s – Equal layer thicknesses 

For most applications PTs will require three or 
more layers to provide an appropriate turns ratio. 
Fig. 7 shows how the resonant frequencies of each 
mode is affected by splitting the device into more 
layers. The opposite effect to changing the layer 

Fig 4 - Variation of λ2 with the ratio of radius to 

thickness for devices for the first flexural mode with 

differing layer thicknesses 

Fig 5 - Variation of λ2 with the ratio of radius to thickness 

for devices for the first flexural mode with differing layer 

thicknesses 

Fig 6 - Variation of λ3 with the ratio of radius to thickness 

for devices for the first flexural mode with differing layer 

thicknesses 



thicknesses in 2 layer designs is observed, leading 
to a decrease in resonant frequency.  

 

4.4 3-5 layer PTs – Differing layer thicknesses 

Similar to the 2 layer designs, in most cases the 
layer thicknesses will need to be different and so 
this will have an effect on the resonant frequency 
of each mode. In order to visualise this effect a new 
metric must be created to encapsulate the relative 
thicknesses of the layers as a single value. Firstly, 
the curves obtained from these simulations 
showed the same shape as those observed in 
Figs. 3-7, and so each change in layer thickness 
enlarges each curve by a scaling factor. Results 
show that the scale factor changes as a function of 
the variance in the layer thicknesses.  

The results of the simulation, shown in Fig. 8, show 
this general trend. The scale factor changes 
linearly with layer thickness variance, so 
increasing the imbalance of the layer thicknesses 
causes an increase in the resonant frequency, a 
similar trend to that seen in 2 layer designs.  

Figs. 9 and 10 highlight the same effect in 4 and 5 
layer designs respectively.  

 

5. Implications of mode interaction 
In order to investigate the effects of spurious 
modes on radial vibration, a frequency domain 
study was performed on a PT with a radius of 9mm 
and a thickness of 2.2mm. From Fig. 3 we can 
observe that this will place the resonant frequency 

Fig 8 – Variation of λ2 scale factor with variance in layer 

thickness for 3 layer devices 

Fig 10 - Variation of λ2 scale factor with variance in 

layer thickness for 5 layer devices 

Fig 9 - Variation of λ2 scale factor with variance in layer 

thickness for 4 layer devices 

Fig 7 – Variation of λ2 with ratio of radius to thickness 

for devices with varying number of layers 



of the 2nd flexural mode and the radial mode in 
close proximity. 

Fig. 11 shows the displacement of device when 
operated at a frequency just above radial 
resonance. The results show that even with the 
two modes occurring 10 kHz apart, there is still an 
effect on the quality of the radial vibration. This will 
relate to poor performance as the coupling factor 
will be reduced and damping will be increased. 

A final factor to consider is the effect spurious 
modes have on the electrical operation of the 
device, specifically the efficiently. PT based power 
converters are known to be highly efficient but to 
achieve this high intrinsic PT efficiency is vital. To 
observe this the Mason equivalent circuit was 
extended to include a spurious resonant branch 
and related transformer as shown by Lin [12].  

The circuit is shown in Fig. 12, with equivalent 
parameters from a device with a radius of 9mm 
and a thickness of 3mm. A frequency domain study 
was performed and the efficiency of the device was 
extracted over a wide range of frequencies.  

 

Fig. 13 shows the resulting curve. The main 
feature of the graph is the sharp drop in efficiency 
at 33kHz. This loss of efficiency is due to a filtering 
affect caused by a combination of the two modes. 
At that particular frequency the current from the 
two branches is equal in magnitude and opposite 

in phase, thus the current circles through the 
branches and output current approaches zero. In 
order to avoid this condition occurring in normal 
operation, an equation for the frequency that this 
condition occurs at was generated and is 
presented in (7).   

𝝎 ≈  ±
√−(𝑪𝟏𝑪𝟐(𝑳𝟏 − 𝑳𝟐)(𝑪𝟏 − 𝑪𝟐))

𝑪𝟏𝑪𝟐(𝑳𝟏 − 𝑳𝟐)
 

(7) 

Equation (7) explains that the frequency that this 
condition occurs at is a function of the inductance 
and capacitance in each branch. To fully observe 
this effect, a second circuit simulation was 
performed in Simulink to observe how efficiency 
changes with resonant frequency and relative ratio 
of inductance to capacitance (L/C) of the spurious 
mode compared to the radial mode. The spurious 
mode resonant frequency was moved between 
10kHz and 300kHz. The ratio of relative spurious 
to radial branch L/C was changed between 1 to 
1500 times that of the radial mode, this was 
chosen after a number of devices were simulated 
and this range fully covers all typical values. The 
frequency of operation (𝑓𝑂𝑃) was 115kHz. 

 

6. Results  
Fig. 14 shows how the efficiency loss of the PT 
increases with proximity of the spurious resonant 
frequency to the radial resonant frequency. 
Another interesting feature that this figure shows is 
that for similar magnitudes of L/C in both branches, 
the spurious mode has to be at a frequency much 
further away from the radial mode in order to keep 
efficiency high. An important consideration when 
analysing the results in Fig. 14 is that the graph is 

Fig 12 – Extended Mason equivalent circuit of a PT with 

radius of 9mm and thickness of 3mm. The radial 

resonance is at 105 kHz, so the circuit will be driven at 

115kHz during operation. Damping values were chosen 

from real PT measurements on a similar device. The   

load was chosen from matched condition 

Fig.  13 – Efficiency of PT over a range of frequencies, 

plotted with spurious and radial resonant frequency for 

comparison 

Fig 11 – Displacement of a PT with radius of 9mm and 

thickness of 2.2mm driven at a frequency of 110kHz 



largely dependent on the value of damping in the 
spurious mode.  

Fig. 15 shows how the efficiency loss of the 
transformer varies with proximity and damping. As 
the damping increases, similar to low values of 
relative L/C in Fig. 14, the further away the 
resonant frequency of the spurious mode needs to 
be from the radial mode in order to keep efficiency 
high. A final point is that if the spurious mode is 
damped to such a level that the current though it is 
minimal, then the apparent effect of this mode is 
highly reduced and the overall efficiency is not 
affected by this spurious mode. 

7. Discussion and guidelines for 
designers 
The analysis presented in this paper highlights 
some of the important factors to consider when 
designing PTs in order to reduce the effect of 
spurious modes. Firstly, the best method of 

reducing the effect of spurious modes is to design 
the transformer such that the resonant frequencies 
of spurious modes are as far from the radial mode 
as possible. Avoiding radius and thickness values 
that give a ratio of close to approximately 1, 4.667 
or 12 is necessary. If values of radius and total 
thickness are chosen such that their ratio is 
approximately 3 or 8.5, the radial mode frequency 
will occur directly in-between two unwanted 
modes.  

In some cases, this will not be possible and so a 
number of other factors need to be considered. 
Ideally minimal or maximal damping is required in 
the spurious vibration, limiting the range of 
frequencies affected by this mode. Damping can 
be reduced through a number of methods such as, 
high Q materials, quality manufacturing and 
appropriate mounting. A final consideration is to 
design the device to have a much larger L/C ratio 
in the spurious mode than in the radial mode. This 
can be achieved by choosing a design that has a 
large ratio of radius to thickness and is also large 
in radius. For example, a device with a 
radius/thickness ratio of 1 has a relative L/C ratio 
much less than a device with a radius/thickness 
ratio of 5. Also a device with a radius of 5mm and 
thickness of 1mm has a lower relative L/C ratio that 
a device with a radius of 15mm and thickness of 
3mm.  

 

8. Conclusions 
The work presented in this paper is an initial 
analysis of where spurious modes occur in 
piezoelectric transformers and investigates the 
effect they have on performance.  It has been 
shown that by careful geometric design, the effect 
of spurious modes can be reduced or in some 
cases eliminated. A number of design rules have 
been presented, as to reduce the effect of spurious 
modes. Although, due to the number of 
independent parameters involved, it isn’t possible 
without FEA to determine if the effect of a spurious 
mode is completely suppressed. In almost all 
cases designing a transformer to the rules 
presented, will prevent deleterious effects. 
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